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STEADY-STATE CONDITIONS OF A NONISOTHERMAL FILM

WITH A HEAT-INSULATED FREE BOUNDARY

UDC 532.516E. A. Karabut and V. V. Pukhnachev

The equilibrium shapes of a nonisothermal liquid film with a heat-insulated free surface for large
Marangoni numbers are investigated in the long-wave approximation using a combination of analytical
and numerical methods. It is proved that the two-dimensional problem of the equilibrium of a strip-
shaped film has a steady-state solution for an arbitrary large temperature gradient on the boundaries
of the strip. An increase in this gradient leads to an abrupt thinning of the film near the heated
boundary, which can result in instability and rupture of the film. In the equilibrium problem for a
film fixed on a circular contour, the nonuniform distribution of the heat flux on the contour was
found to have a significant influence on the free-surface shape.

Key words: wave flow of liquid, thin nonisothermal liquid film, summation of power series,
collocation method.

Introduction. At present, the theory of wave flow of liquid films has become an independent branch of
hydrodynamics with various technological applications [1]. In the analysis of the problems arising in this theory, the
main approach is the long-wave approximation. Most efforts in this area have focused on studying isothermal motion
of films flowing down a solid surface. Among the papers dealing with nonisothermal flows along an inclined plane,
mention should be made of [2–5]. Much less attention has been given to motion of films whose both boundaries
are free but nonuniformly heated or contain surfactants [6–10]. The latter case is more difficult to study because
among the required functions are both the volumetric and surface concentrations of surfactants. In contrast to
concentration, liquid temperature is not divided into volumetric and surface parts, which simplifies the analysis.

A simple example of a free liquid film is water in a sieve mesh. The nonisothermal films formed during
coating application and in the manufacture of polymers can be used to design new heat exchange apparatus. We
are not aware of experimental studies of free films of the macroscopic scale. It is reasonable to perform such studies
on a space station, where the range of steady-state parameters of a free film is wider than under Earth conditions.

The long-wave equations describing the motion of a free weightless film fixed at a plane contour and acted
upon by thermocapillary forces were derived in [7, 11]. It turned out that, within the framework of this approx-
imation, the shape of the free boundary of the film can be determined without having detailed information on
the dependence of the velocity vector on the vertical coordinate. This distinguishes the problem discussed from
the problem of flow of a thin layer of a viscous liquid adjacent to a solid plane. If the film thickness as a func-
tion of the coordinates and time is known, the velocity field in the film is found approximately by solving the
initial-boundary-value problem formulated in [11].

In the mathematical modeling of nonisothermal film flows, the condition of thermal contact of the liquid
and gas phases plays a key role. As a rule, this condition is approximated by the boundary-value condition of the
third kind for liquid temperature containing an empirical coefficient. To avoid the use of empirical information, it is
necessary to investigate the problem of the joint motion of the liquid and gas (see, for example, [12]) or to examine
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the limiting situations where transfer processes in the gas are not considered. One of such situations corresponds
to the assumption of a perfectly heat-conducting free surface [7]. In this case, its temperature coincides with the a
priori specified gas temperature at the interface. In another case, which is considered in the present paper, the free
boundary is heat insulated.

1. Formulation of the Problem. The equilibrium problem for a free weightless film with a heat-insulated
free boundary is investigated. In the thin-layer approximation, the behavior of the film is described by two functions:
its thickness h and the temperature T averaged over the thickness. The film occupies a plane domain ω, on whose
boundary ∂ω the heat flux is specified. The mathematical formulation of the problem [11] consists of seeking a
solution h(x1, x2), T (x1, x2) of the system of equations

∇ · (h∇Δh) = γΔT, ∇ · (h∇T ) = 0, (x1, x2) ∈ ω, (1.1)

that satisfies the conditions
∂h

∂n
= 0, h

∂Δh

∂n
= γ

∂T

∂n
, h

∂T

∂n
= g(x), (x1, x2) ∈ ∂ω; (1.2)

∫

ω

h(x1, x2) dω = S. (1.3)

Relations (1.1) and (1.2) are written in dimensionless variables. The average film thickness δ is chosen as the
transverse scale of the length, and the diameter l of the physical domain occupied by the film as the longitudinal
scale. The temperature scale is the quantity Qlk−1 (Q is the characteristic value of the heat flux on the plane
contour bounding the film and k is the thermal conductivity of the liquid); ∂/∂n is the derivative in the direction
of the outward normal to the curve ∂ω. Condition (1.3), in which S is the area of the domain ω, implies that the
average dimensionless film thickness is equal to unity. The first condition in (1.2) implies that the angle of wetting
of the solid cylindrical surface bounding the liquid Σ with cross section ∂ω is π/2 (this assumption is not necessary
but it simplifies the problem). The function g(x) specifying the distribution of the dimensionless heat flux on the
contour ∂ω satisfies the compatibility condition ∫

∂ω

g ds = 0, (1.4)

where ds is an element of the arc length ∂ω. The second boundary condition in (1.2), derived in [7], follows from the
impermeability condition for the surface Σ. The parameter γ, included in this condition is defined by the formula

γ =
σT Ql3

σ0kδ2
,

where σ0 is the average value of the surface tension coefficient σ(T ) and σT is the temperature surface-tension
coefficient, and

σ = σ0 − σT (T − T0)

(T0 is the average temperature in the domain ω; the quantities σT , σ0, and T0 are assumed to be constant and
positive). The parameter γ plays the role of the Marangoni number — the main similarity criterion in the theory
of thermocapillary flows. We note that, although the paper deals with steady-state states of the film, the velocity
field in it is nonzero. However, the problem of calculating the velocity field is not considered here.

It is easy to see that, in the solution of problem (1.1)–(1.3), the function T is determined to within an
additive constant. This arbitrariness can be eliminated by requiring that the following condition be satisfied:∫

ω

T (x1, x2) dω = 0. (1.5)

Next, the normalization condition (1.5) is assumed to be satisfied. In [11], the following fact is proved. If the curve
∂ω belongs to the Holder class C4+α (0 < α < 1) and if the function g belongs to the Holder class C4+α(∂ω) and
satisfies the compatibility condition (1.4), there exists γ0 > 0 such that, for γ ∈ [0, γ0], problem (1.1)–(1.3) has a
unique solution h ∈ C4+α(ω̄), T ∈ C2+α(ω̄). This solution can be represented as
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h = 1 +
∞∑

k=1

γkhk(x1, x2), T =
∞∑

k=1

γkTk(x1, x2). (1.6)

Series (1.6) converge in the norms of the spaces C4+α(ω̄) and C2+α(ω̄), respectively, if γ ∈ [0, γ0].
For the case where ω is a unit circle and g = 2x1x2, the functions h1, h2, and T1 were found in [11]. In

the present work, the next terms of the power series (1.6) for this case were calculated. Numerical investigation
of the terms obtained allows a prediction of the radius of convergence of the power series. From the results of the
numerical calculations, it follows that the film strains are considerable even for moderate values of the parameter γ.

The simplest variant of problem (1.1)–(1.3) corresponds to the case where ω is a strip and the heat flux on
its boundaries is constant and equal to q. In this case, the functions h and T depend only on one variable x = x1

and Eqs. (1.1) admit single integration. As a result, problem (1.1), (1.3) reduces to determining a positive function
h(x) which satisfies the equation

h2hIII = −b, 0 < x < 1 (1.7)

and the additional relations

ḣ(0) = ḣ(1) = 0; (1.8)

1∫

0

h(x) dx = 1. (1.9)

Here b = −γq; the dot denotes differentiation with respect to x. Without loss of generality, we can assume that
the number b is nonnegative (the case b � 0 reduces to the previous one by the substitution x̃ = 1 − x). After the
solution of problem (1.7)–(1.9), the function T (x) is determined from the formula

T = −q

1∫

0

dy

h(y)
+ q

1∫

0

( x∫

0

dy

h(y)

)
dx. (1.10)

Relation (1.10) was derived taking into account the normalization condition (1.5).
A preliminary study of problem (1.7)–(1.9) was performed in [11]. It was established that, for b > 0, the

function h(x) increases strictly monotonically in the interval (0, 1) and has a single point of inflection x∗. If b = 0,
the unique solution of problem (1.7)–(1.9) is h = 1. For small b, the solution of this problem has the asymptotics

h = 1 + b(−1/24 + x2/4 − x3/6) + O(b2), b → 0. (1.11)

In addition, it was proved that, for any finite b > 0, the quantity h(0) is positive and ḧ(0) > 0. Below, it is proved
that problem (1.7)–(1.9) has at least one solution for any b > 0, and results of its numerical investigation are given.

2. Solvability of Problem (1.7)–(1.9). Effective investigation of problem (1.7)–(1.9) is based on the
reduction of Eq. (1.7) to a first-order equation. This can be done because the indicated equation has a two-
parameter group of transformations (translation along x and uniform extension of the variables x and h). Using
these symmetry properties, the examined problem can be reduced to the Cauchy problem

y2yIII = −1; (2.1)

y = 1, ẏ = c, ÿ = 0 at x = 0, (2.2)

where c is a positive constant. We prove that, for any c > 0, problem (2.1), (2.2) has a solution with the following
properties:

1) there exist x1 < 0 and x2 > 0 such that ẏ(x1) = ẏ(x2) = 0;
2) y(x) > 0 if x1 � x � x2;
3) ẏ(x) > 0 if x1 < x < x2;
4) ÿ(x) > 0 if x1 � x < 0, and ÿ(x) < 0 if 0 < x � x2.
In Eq. (2.1) we transform to a new independent variable s and a new required function z using the formulas

y = exp (s), ẏ = z(s). (2.3)
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The function z(s) satisfies the second-order equation

z2
(d2z

ds2
− dz

ds

)
+ z

(dz

ds

)2

= −1 (2.4)

and the initial conditions

z = c,
dz

ds
= 0 at s = 1.

Substitution of the expression (
z

dz

ds

)2

= w(z) (2.5)

into (2.4) reduces Eq. (2.4) to the first-order equation
(dw

dz
+ 2

)2

= z2w,

which is equivalent to the two equations

dw1

dz
= −2 − zw

1/2
1 ; (2.6)

dw2

dz
= −2 + zw

1/2
2 . (2.7)

By the definition, the functions w1 and w2 cannot take negative values. For Eqs. (2.6) and (2.7), we examine
the Cauchy problems

wk(c) = 0, k = 1, 2. (2.8)

The smoothness of the right sides of Eqs. (2.6) and (2.7) is violated at the point z = c, wk = 0. However, both
Cauchy problems (2.6), (2.8) and (2.7), (2.8) have unique solutions defined in the left half-neighborhood of the
point z = c, where the asymptotics of the functions wk(z) has the form

w1 = 2(c − z) + (c/3)[2(c − z)]3/2 + O(c − z)2, w2 = 2(c − z) − (c/3)[2(c − z)]3/2 + O(c − z)2.

The integral curve of Eq. (2.7) with origin at the point z = c, w1 = 0 is above the straight line w1 =
2(c− z). Since the right side of this equation increases sublinearly along the variable w1, the solution of the Cauchy
problem (2.7), (2.8) can be continued up to the point z = 0, and w1(0) > 2c.

The integral curve of Eq. (2.6) with origin at the point z = c, w2 = 0 is below the straight line w2 = 2(c−z).
Reasoning by contradiction shows that, for 0 � z < 0, the equality w2(z) = 0 is impossible. Continuing the solution
w2 to its natural boundary z = 0, we conclude that 0 < w2(0) < 2c.

If the solutions of problems (2.6)–(2.8) are known, the functions s1(z) and s2(z) can be determined by the
relations

s1(z) = −
c∫

z

ζ dζ

[w1(ζ)]1/2
, s2(z) =

c∫

z

ζ dζ

[w2(ζ)]1/2
, 0 � z � c. (2.9)

In the interval [0, c), the function s1 increases strictly monotonically, and the function s2 decreases strictly monoton-
ically. Convergence of the integrals in (2.9) is guaranteed by the fact that both functions w1 and w2 have the main
linear part 2(c − z) as z → c − 0. Inverting relations (2.9) with respect to z, we obtain two functions: z = Z1(s1)
and z = Z2(s2). The first of these functions is determined on the segment ξ1 � s1 � 0 and increases monotonically
from zero to c, and the second is determined on the segment 0 � s2 � ξ2 and decreases monotonically from c to
zero. Here ξk = sk(0), k = 1, 2. The functions Zk(sk) satisfy Eq. (2.5) with the right side wk (k = 1, 2). These
functions are analytical in the intervals (ξ1, 0) and (0, ξ2), and, at the ends of the indicated intervals, they have the
asymptotics

Zk = [2wk(0)|sk − ξk|]1/2 + O(|sk − ξk|)3/2 at sk → ξk, k = 1, 2.

In addition, the function Z2
2 is an analytical continuation of the function Z2

1 from the interval (ξ1, 0) to the interval
(0, ξ2).
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We obtain a parametric representation of the solution of the Cauchy problem in the intervals [x1, 0] and
[0, x2] in terms of integrals of the functions wk(z) [we recall that ẏ(x1) = ẏ(x2) = 0)]. From (2.3) it follows that
dx = exp (s)[z(s)]−1 ds. In view of (2.9) and the relation y = exp (s), this makes it possible to determine the
dependences of x and y on z using the relations

y = exp
(
−

c∫

z

ζ dζ

[w1(ζ)]1/2

)
, x = −

c∫

z

exp
(
−

c∫

ζ

η dη

[w1(η)]1/2

) dζ

[w1(ζ)]1/2
at x1 � x � 0,

y = exp
( c∫

z

ζ dζ

[w2(ζ)]1/2

)
, x =

c∫

z

exp
( c∫

ζ

η dη

[w2(η)]1/2

) dζ

[w2(ζ)]1/2
at 0 � x � x2.

(2.10)

The values of x1(c) and x2(c) are obtained from formulas (2.10) if we set z = 0 in them. It is easy to verify that,
for an arbitrary value of the parameter c > 0, the function y(x) determined implicitly by equalities (2.10) satisfies
Eq. (2.1) and the initial conditions (2.2) and also have properties 1–4.

In Eq. (2.1), we transform to a new independent variable x̃ and a new required function h(x̃):
x = (x2 − x1)x̃ + x1, y(x) = Ah(x̃). (2.11)

Then, the interval x1 < x < x2 becomes the interval 0 < x̃ < 1. We require that the function h(x̃) satisfy condition
(1.9). This implies the following relation between the quantities x1, x2, A, and c:

(x2 − x1)A =

x2∫

x1

y(x) dx. (2.12)

Due to (2.11), the function h(x̃) determined for 0 � x � 1 satisfies the equation

h2 d3h

dx̃3
= −A−3(x2 − x1)3.

Based on (2.10) and (2.11), this function also satisfies boundary-conditions (1.8). In order that the last equation
coincide with (1.7), it is necessary that the equality (x2 −x1)3 = bA3 be satisfied. Substituting the values of x1, x2,
and A found by formulas (2.10) and (2.12) into this equality and transforming to the variable z in the calculation
of integral (2.12), we obtain the equation relating the parameters b and c:

F (c) ≡
[ c∫

0

2∑
k=1

exp
(
(−1)k

c∫

z

ζ dζ

[wk(ζ)]1/2

) dz

[wk(z)]1/2

]2

×
[ c∫

0

2∑
k=1

exp
(
2(−1)k

c∫

z

ζ dζ

[wk(ζ)]1/2

) dz

[wk(z)]1/2

]−1

= b1/3. (2.13)

The aforesaid implies that, in Eq. (2.13), the function F (c) is definite and continuous for any c > 0. Thus,
solving the Cauchy problem (2.1), (2.2) for various values c, we obtain the solution of the initial boundary-value
problem (1.7)–(1.9) for values of the parameter b = F (c). If c is small, the solutions of both Cauchy problems (2.6),
(2.8) and (2.7), (2.8) have identical asymptotics:

wk = 2(c − z) + O(c − z)3/2, 0 � z � c, k = 1, 2, c → 0.

Substituting these expressions into Eq. (2.13), we obtain F = 2(2c)1/2 +O(c) with c → 0. If one proves that F → ∞
as c → ∞, this implies the solvability of Eq. (2.13) for any b > 0.

An analysis of the behavior of the function F for large values of c is difficult to because the asymptotics of
the functions w1 and w2 are not uniform over the entire interval [0, c] if c → ∞. We first examine problem (2.6),
(2.8). Transforming to new variables z = ct and w1(z) = c4u(t), we obtain

du

dt
= −ε− tu1/2, 0 < t < 1, u(1) = 0, (2.14)

where ε = 2c−3. In any interval [0, 1 − ε], the solution of problem (2.14) has the representation

16u = (1 − t2)2 + O(ε), ε → 0. (2.15)
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In the interval [1 − ε, 1], the main term u0 of the asymptotics of the function u is determined implicitly from the
equation

2u
1/2
0 − 2ε ln (1 + ε−1u

1/2
0 ) = 1 − t, ε → 0. (2.16)

Representations (2.15) and (2.16) are sufficient to obtain the estimates
c∫

0

exp
(
− n

c∫

z

ζ dζ

[w1(ζ)]1/2

) dz

[w1(z)]1/2
= O(1), c → ∞, n = 1, 2. (2.17)

We now examine problem (2.7), (2.8). The function v(t) = c−4w2(z) is a solution of the Cauchy problem

dv

dt
= −ε + tv1/2, 0 < t < 1, v(1) = 0.

In the interval [0, 1 − ε], the asymptotics of solution of this problem is written as

v = ε2 + O(ε3), ε → 0. (2.18)

In the interval [1 − ε, 1], the main term v0 of the asymptotics of the function v satisfies the equation

−2v
1/2
0 − 2ε ln (1 − ε−1v

1/2
0 ) = 1 − t, ε → 0. (2.19)

In this case, the inequality v0 < ε2 holds for t < 1. Hence, in Eq. (2.19), the argument of the logarithmic function
is positive. Formulas (2.18) and (2.19) lead to the representations

c∫

0

exp
( c∫

z

nζ dζ

[w2(ζ)]1/2

) dz

[w2(z)]1/2
= (21−nπc)1/2 exp

(nc3

4

)
[1 + O(c−1)],

c → ∞, n = 1, 2.

(2.20)

Estimates (2.19) were derived taking into account that the main contribution to the estimated integrals comes from
the values of the subintegral function in the interval [0, c− cε], where the function w2 is close to the constant 4c−2.

From the results of comparison of expressions (2.17) and (2.20), it follows that, for large values of c, the
main contribution to the function F (c) comes from the second terms of the sums in both the numerator and
denominator of the fraction defining this function. Separating the main term of the asymptotics of F (c), we obtain
F = (2πc)1/2 + O(1) if c → ∞. Thus, the function F (c) defined for any c � 0 has the following properties: 1) it is
continuous; 2) it takes positive values for c > 0; 3) F (0) = 0; 4) F → ∞ if c → ∞. From this it follows that the
equation F (c) = b has at least one solution for any b > 0. Thus, it is proved that problem (1.7)–(1.9) is solvable
for any positive value of the parameter b proportional to the dimensionless heat flux q. Because q > 0, it follows
that, the temperature decreases with increasing x while the film thickness increases as the cooled boundary x = 1 is
approached. This effect is natural since the surface tension coefficient increases with decreasing temperature.

3. Numerical Solution of Problem (1.7)–(1.9). We will solve the problem using two methods: sum-
mation of power series and the collocation method.

We seek a solution in the form of the power series

h(x) = 1 +
∞∑

j=1

hj(x)bj . (3.1)

Here h1 it is known [see (1.11)]. We find the coefficients hj for j > 1. Substituting series (3.1) into problem
(1.7)–(1.9) and equating the terms at identical powers of b, we obtain the following sequence of boundary-value
problems for the third-order linear differential equation:

aj−1 =
j−1∑
k=0

hkhj−k, hIII
j = −

j−1∑
k=1

hIII
k aj−k,

ḣj(0) = 0, ḣj(1) = 0,

1∫

0

hj dx = 0.

(3.2)
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Solving problem (3.2) recursively for each j > 1, we find a pair of functions aj−1(x) and hj(x). As a result, we have

h2 = − 1
3360

+
1

120
x2 − 1

72
x3 +

1
120

x5 − 1
360

x6,

h3 = − 473
7,257,600

+
17

26,880
x2 − 13

13,440
x3 +

19
14,400

x5 − 1
1728

x6 − 1
1120

x7 +
1

1260
x8 − 1

5670
x9.

All subsequent coefficients are similar polynomials of x, whose power increases rapidly with increasing coefficient
number.

Let us estimate the radius of convergence of series (3.1). We note the well-known fact: in an arbitrary power
series, if there exists a limit for the ratio of the previous coefficient to the subsequent coefficient as the coefficient
numbers tend to infinity, this limit is equal to the singular point of the function represented by the power series
considered. For (3.1), such a limit does not exist. However, if a series

∑
hjb

j (here hj are numbers) is broken

into even and odd components
∑

h2jb
2j and

∑
h2j+1b

2j+1, then for these series there exist identical limits of
sequences

lim
j→∞

√
h2j−2/h2j = lim

j→∞

√
h2j−1/h2j+1 = b∗.

This implies that, for b = b∗, the function h(x) has a singularity which limits the convergence, i.e., the radius of
convergence (3.1) is equal to b∗.

Below, for various values of x, we give the last five elements of the sequences{√
h2j−2/h2j

}
,

{√
h2j−1/h2j+1

}
(3.3)

(the maximum index of the coefficient used is 50). For example, for x = 0, we have the following power series:

h = 1 − 1
24

b − 1
3360

b2 − 473
7,257,600

b3 − 33,023
29,059,430,400

b4 + . . . .

The corresponding sequences (3.3) have the form

9.665,309,932 9.675,477,093
9.648,750,827 9.657,961,890
9.633,693,982 9.642,077,742
9.619,943,821 9.627,606,945
9.607,337,313 9.614,368,880
. . . . . . . . . . . . . . . . . . . . . . . .

This suggests that both sequences tend to the same limit. Similarly, for x = 1/2, we have a different power series:

h = 1 +
43

161,280
b2 +

2,040,169
2,231,764,254,720

b4 +
47,418,886,356,551

8,719,520,797,305,077,760,000
b6 + . . . .

Here the odd component is absent; therefore, we can form just one sequence:

9.667,366,237
9.650,615,617
9.635,392,814
9.621,497,904
9.608,764,387
. . . . . . . . . . . .

This sequence tends to approximately the same limit. Results of similar studies at other points x suggest that the
radius of convergence of series (3.1) does not depend on x. For b = b∗ ≈ 9.3, the solution has a singular point.
Obviously, this is a bifurcation point. Constructing the solution for b > b∗ requires special methods.

Figure 1 shows film thickness profiles for nine integer values of b obtained using 15 terms of the power series
(3.1) (solid curve). As the parameter b increases, the heat flux on the boundary increases and, accordingly, the film
strain increases.
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Fig. 1. Numerical solution of the one-dimensional problem (1.7)–(1.9) for various values of the
parameter b: the solid curve refers to the calculation using the series summation method and
the collocation method; the dotted curve refers to the calculation using the collocation method
(b = 9.316 is the bifurcation point).

To control the error, we use the collocation method. We seek a solution in the form of a polynomial of the
Nth power:

h(x) = c1 + c2x
2 + . . . + cNxN . (3.4)

The approximation accuracy increases with increasing number N . Polynomial (3.4) does not contain a term with
the first power; therefore, the left boundary-value condition (1.8) is satisfied automatically. The quantities to be
determined are the coefficients of the polynomial c1, c2, . . . , cN . A solution of the form (3.4), generally speaking,
does not satisfy Eq. (1.7). The essence of the collocation method consists of requiring that this equation be valid
at a finite number of points. Substituting solution (3.4) into (1.7) and requiring its validity at N − 2 points
xi = (i − 1)/(N − 3), we obtain the equations

fi(c1, c2, . . . , cN) = 0 (i = 1, 2, . . . , N − 2). (3.5)

From the right boundary-value condition (1.8) and the integral relation (1.9), we obtain two more equations,
respectively:

2c1 + 3c2 + . . . + NcN = 0; (3.6)

c1 +
c2

3
+

c3

4
+ . . . +

cN

N + 1
− 1 = 0. (3.7)

As a result, we have a system of N nonlinear equations for N unknowns c1, c2, . . . , cN . System (3.5)–(3.7) was
solved using the Newton method. The solution h = 1 was taken to be the initial approximation for small b. Next,
analytical continuation in the parameter b (by small steps in b toward its increase) was performed, and, in each
step, the solution obtained in the previous step was used as the initial approximation. If the step is small enough
and the Jacobian of the system of algebraic equations is nonzero, the Newton method always converges with this
choice of the initial approximation. The results obtained using the collocation method coincide with the results
found by summation of the power series (3.1).

For integer b, the film thickness profiles coincided (with an error smaller than the line thickness) with the
profiles in Fig. 1 (solid curve). The dotted curve in Fig. 1 corresponds to the profile with the largest calculated
strain obtained for b ≈ b∗ only using the collocation method since the power series (3.1) diverges. In the Newton
method for b ≈ b∗, the Jacobian vanishes (in the real calculations, the change in the sign of the Jacobian was fixed).
This means that the bifurcation point is found. For b > b∗, the further analytical continuation proved impossible
because the iterations in the Newton method ceased to converge. In this case, one needs an additional investigation
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of the character of the bifurcation point and a special choice of the initial approximation in the Newton method.
With a further increase in b, the film strain continues to increase, and to construct the film thickness profile, it is
necessary to use special methods.

4. Numerical Solution of Problem (1.1)–(1.3) in a Circle. We seek a solution of problem (1.1)–(1.3)
in the form of series (1.6). Substituting these series into the equations and equating terms at identical powers of γ,
we obtain a sequence of boundary-value problems. To find a pair of functions T0 and h1, it is required to solve the
following problem:

ΔT0 = 0, ΔΔh1 = 0, (x1, x2) ∈ ω,

∂T0

∂n
= g,

∂h1

∂n
= 0,

∂Δh1

∂n
= g, (x1, x2) ∈ ∂ω,

∫

ω

T0 dω = 0,

∫

ω

h1 dω = 0.

The subsequent functions Tk, hk+1 (k = 1, 2, . . .) are determined from the recursive system of equations and
boundary conditions:

ΔTk = −∇ ·
( k∑

i=1

hi∇Tk−i

)
,

ΔΔhk+1 = ΔTk −∇
( k∑

i=1

hi∇Δhk+1−i

)
, (x1, x2) ∈ ω,

∂Tk

∂n
= −

k∑
i=1

hi
∂Tk−i

∂n
,

∂hk+1

∂n
= 0,

∂Δhk+1

∂n
=

∂Tk

∂n
−

k∑
i=1

hi
∂Δhk+1−i

∂n
, (x1, x2) ∈ ∂ω,

∫

ω

Tk dω = 0,

∫

ω

hk+1 dω = 0.

Solving these boundary-value problems sequentially, in polar coordinates (x1 = r cosϕ and x2 = r sin ϕ), we obtain

T0(r, ϕ) =
1
2

r2 sin 2ϕ, h1(r, ϕ) =
1
24

(r4 − 2r2) sin 2ϕ,

T1(r, ϕ) = − 1
288

r6 +
1
96

r4 − 1
384

+
( 1

480
r6 − 1

120
r4

)
cos 4ϕ,

h2(r, ϕ) = − 1
9216

r8 +
1

1728
r6 − 1

768
r2 +

73
138,240

+
( 1

11,520
r8 +

31
28,800

r4 − 1
1200

r6
)

cos 4ϕ,

T2(r, ϕ) =
( 71

552,960
r10 − 31

43,200
r8 +

221
230,400

r6 +
1

4608
r4 − 547

2,764,800
r2

)
sin 2ϕ

+
(
− 1

36,864
r10 +

31
201,600

r8 − 67
258,048

r6
)

sin 6ϕ,

h3(r, ϕ) =
( 41

15,482,880
r12 − 7

331,776
r10 +

79
1,728,000

r8 +
1

73,728
r6

− 1181
33,177,600

r4− 4049
64,512,000

r2
)

sin 2ϕ+
(
− 29

39,813,120
r12+

29
4,300,800

r10− 1109
43,352,064

r8+
23,729

975,421,440
r6

)
sin 6ϕ.

The subsequent terms of the series are similar trigonometric polynomials, whose coefficients, in turn, are polynomials
of r.
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Let us estimate the radius of convergence of these series. For example, for r = 0, we have

h = 1 +
73

138 240
γ2 +

238,291,217
156,067,430,400,000

γ4 +
86,683,166,091,871,277,713

10,057,327,448,227,332,489,216,000,000
γ6 + . . . .

All coefficients of this power series are positive numbers. According to the well-known theorem of complex analysis,
this implies that the singularity bounding the convergence of the series and located in the complex plane γ is on
the positive real axis. To find this singular point, we form, as above, a sequence of square roots of the ratio of the
previous of the subsequent coefficient (the maximum number of the coefficient used is 20; the last five elements of
the sequence are given):

10.833,340,12
10.576,530,24
10.395,380,35
10.260,786,14
10.156,865,19
. . . . . . . . . . . .

It is known that, if this sequence converges, it converges to the radius of convergence. Obviously, the radius of
convergence is a number that slightly exceeds 10. What is the radius of convergence at other points of the circle?
For example, for r = 1 and ϕ = 0, we have

h = 1 +
1

38,400
γ2 +

892,430,023
5,407,736,463,360,000

γ4 +
781,713,706,853,446,010,687,833

72,838,727,350,200,255,733,825,536,000,000
γ6 + . . . .

Similarly, the sequence

10.705,057,91
10.488,521,95
10.331,243,72
10.211,961,27
10.118,448,70
. . . . . . . . . . . .

converges to the same limit. Considering the point r = 1, ϕ = π/4, we obtain the power series containing both even
and odd powers:

h = 1 − 1
24

γ − 73
115,200

γ2 − 379,741
6,096,384,000

γ3 − 10,223,842,219
4,326,189,170,688,000

γ4 + . . . .

In this case, it is possible to form two sequences similar to (3.3):

10.734,581,21 10.924,129,72
10.505,732,21 10.635,848,20
10.342,024,02 10.436,932,87
10.219,072,88 10.291,393,49
10.123,325,62 10.180,282,35
. . . . . . . . . . . . . . . . . . . . . . . .

Each of these sequences tends to the same limit.
A detailed study for various points of the unit circle shows that, for the functions T and h, the radii of

convergence, first, are identical, and second, do not depend on r and ϕ. In other words, all parts of the solution
represented by power series fail simultaneously for γ = γ∗ ≈ 10.1. It was assumed that this failure occurs when the
film thickness becomes equal to zero, but this failure occurs earlier.

How much rapidly do the series converge and how many terms of the series is it necessary to take to obtain
reasonable accuracy of the solution up to γ = 10? We examine this question for r = 1. In this case, the solution
for the film thickness is written as

h = 1 − 1
24

sin 2ϕγ +
(
− 7

23,040
+

19
57,600

cos 4ϕ
)
γ2 +

( 5567
96,768,000

sin 2ϕ +
1451

304,819,200
sin 6ϕ

)
γ3 + . . . .
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Fig. 2. Partial sums of series (1.6) for the film thickness profile on a circle r = 1 for γ = 9 and
various number of the terms kept N : N = 1 (1), 2 (2), 4 (3), and 20 (4); the points refer to N = 19.
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Fig. 3. Variation of the film thickness (a) and temperature (b) for r = 1: γ = 0 (1), 3 (2), 6 (3), and 9 (4).

In this series, we keep terms up to the terms γN inclusive. The obtained partial sums are presented in Fig. 2 for
γ = 9 and various values of N . Figure 2 shows the convergence of series (1.6). The points corresponding to the
value N = 19 almost coincide with the film thickness profile corresponding to N = 20. From Fig. 2 and from the
results of a similar study for the temperature profile, it follows that 20 terms of the series are sufficient to describe
the solution everywhere with high accuracy almost up to the radius of convergence.

The evolution of the film thickness and temperature profile for r = 1 and various values of γ is presented in
Fig. 3. It is evident that an increase in the heat flux on the boundary (i.e., with an increase in the parameter γ)
leads to a considerable strain of the film and an increase in the temperature gradient. Construction of solutions for
larger values of the parameter γ by direct summation of series (1.6) is impossible since, for γ > 10, the series begin
to diverge.

The shape of the film surface for γ = 10 is given in Fig. 4. For illustration, the scales on the x1, x2, and h

axes are different. Constant level lines are shown on the film surface. For this value of the heat flux on the cylinder,
the flow is subjected to considerable strains and, at two points, the film thickness, becomes small. Obviously, a
further increase in γ leads to rupture of the film at these points.

Figure 5 shows lines of constant temperature T for γ = 10 in the plane (x1, x2). The darker sites correspond
to higher temperature. The temperature field on the film is generally smoother than that on its boundary. In other
words, the maximum temperature gradients are reached on the circle.
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Fig. 4. Thickness profile h of a film located in a nonuniformly heated cylinder for γ = 10.

Fig. 5. Temperature level lines for a film fixed inside a solid cylinder of unit radius.
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